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1. Introduction

The degrees of freedom of maximally supersymmetric theories in various dimensions are rep-

resented in light-cone superspace by a constrained chiral superfield, whose components rep-

resent the 256 fields of several theories: N = 1 supergravity in eleven dimensions [1], N = 8

supergravity in four dimensions [2 – 4], and N = 16 supergravity in three dimensions [5, 6].

In a previous paper, we have shown how the Cremmer-Julia [3] non-linearly realized E7(7)

symmetry acts on this superfield [7], and how it can be used to construct its interactions.

In this paper, we construct the non-linear E8(8) transformations on the same superfield.

Dynamics is introduced by constructing 16 dynamical supersymmetries in three dimensions.

In particular, SO(16)(⊂ E8(8)) invariance requires the dynamical supersymmetries to be

limited to terms odd in the superfield: the d = 3 E8(8)-invariant theory has no vertices

of odd order (cubic, quintic, etc.). This is understandable since the superfield contains

the two SO(16) spinor representations, and spinor representations have no odd invariants.

Thus this theory is different from that obtained by dimensional reduction, which is not

E8(8) invariant.

2. Chiral superspace

Consider the N = 8 superspace spanned by eight Grassmann variables, θm and their

complex conjugates θ̄m (m = 1, . . . , 8). Introduce the chiral derivatives

dm ≡ − ∂

∂θ̄m
− i√

2
θm∂+ , d̄m ≡ ∂

∂θm
+

i√
2
θ̄m∂

+ , (2.1)

written in terms of the light-cone derivative, ∂+, where

∂± =
1√
2

(− ∂0 ± ∂d−1 ) , (2.2)
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are conjugate to x± = 1√
2
(x0 ±xd−1 ), with the metric (−,+, . . . ,+) in the space with

(d − 2) transverse coordinates x j
⊥ (j = 1, . . . , d − 2). The chiral derivatives satisfy the

canonical anticommutation relations

{
dm , d̄n

}
= − i

√
2δm

n∂
+ . (2.3)

They are used to construct a constrained chiral superfield ϕ and its complex conjugate ϕ,

related by the inside-out constraint

ϕ =
1

4 ∂+4
d1d2 · · · d8 ϕ , (2.4)

as well as the chiral constraints

dm ϕ = 0 , d̄m ϕ = 0 .

The chiral superfield can then be expanded in powers of θm,

ϕ ( y ) =
1

∂+2 h (y) + i θm 1

∂+2 ψm (y) + i θmn 1

∂+
Bmn (y)

− θmnp 1

∂+
χmnp (y) − θmnpq Dmnpq (y) + iθ̃ mnp χ

mnp (y)

+ iθ̃ mn ∂
+Bmn (y) + θ̃ m ∂+ ψm (y) + 4 θ̃ ∂+2

h̄ (y) , (2.5)

where

θa1a2...an =
1

n!
θa1θa2 · · · θan , θ̃ a1a2...an

= ǫa1a2...anb1b2...b(8−n)
θb1b2···b(8−n) .

The expansion coefficients are functions of the chiral coordinates

y =

(
x j
⊥, x

+, y− ≡ x− − i√
2
θmθ̄m

)
,

and can be viewed as the 256 physical fields of theories in various dimensions. In four

dimensions (two transverse coordinates), they describe the physical degrees of freedom of

N = 8 Supergravity: 128 bosons, the spin-2 graviton h and h, twenty eight vector fields

Bmn and Bmn and seventy real scalars Dmnpq; 128 fermions: eight spin-3
2 gravitinos ψm

and ψm, fifty six gauginos χmnp and their conjugates χmnp. In eleven dimensions, they

encode the three fields of N = 1 Supergravity [8]. In three dimensions, it can be used

to describe at least two different N = 16 Supergravity theories with 128 scalars and 128

fermions, but they differ in their global non-linear symmetries, as we show in this paper.

3. Symmetries of N = 8 superspace

In N = 8 Superspace, we can also introduce the operators

qm = − ∂

∂θ̄m
+

i√
2
θm∂+ , q̄m =

∂

∂θm
− i√

2
θ̄m∂

+ , (3.1)
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which satisfy the anticommutation relations

{ qm , q̄n } = i
√

2 δm
n ∂

+ . (3.2)

Their linear action on the chiral superfield

δkin
s̄ ϕ(y) = ǫm qm ϕ(y) , δkin

s ϕ(y) = ǫm q̄m ϕ(y) , (3.3)

where ǫm and ǫm are Grassmann parameters, do not alter chirality, since

{ qm , d̄n } = { qm , dn } = 0 . (3.4)

These transformations are interpreted as the kinematical light-cone supersymmetries.

On the other hand, their quadratic action on the chiral superfields generates the 120

SO(16) transformations. The eight Grassmann variables and their conjugates form its

vectorial 16 representation under

SO(16) ⊃ SU(8) × U(1) , 16 = 8 + 8 .

The SU(8) and U(1) generators are given by

T i
j =

i

2
√

2 ∂+

(
qiq̄j − 1

8
δi

j q
k q̄k

)
, T =

i

4
√

2 ∂+
[ qk , q̄k ] , (3.5)

with commutation relations

[T i
j , T

k
l ] = δk

j T
i
l − δi

l T
k
j , [T , T i

j ] = 0 .

The remaining quadratic combinations describe the coset transformations SO(16)/(SU(8)×
U(1))

T ij =
1

2

1

∂+
qiqj , Tij =

1

2

1

∂+
q̄iq̄j , (3.6)

which form the 28 and 28 of SU(8), and close on (SU(8) × U(1))

[T ij , Tkl ] = δj
kT

i
l − δi

kT
j
l − δj

lT
i
k + δi

lT
j
k + 2 ( δj

kδ
i
l − δj

lδ
i
k )T .

SO(16) acts linearly on the chiral superfield

δSU8
ϕ = ωj

i T
i
j ϕ , δU(1) ϕ = T ϕ ,

δ28 ϕ = αij
qiqj

∂+
ϕ , δ28 ϕ = αij q̄iq̄j

∂+
ϕ , (3.7)

where ωj
i, αij , and αij the transformation parameters. SO(16) is the largest linearly

realized symmetry group in N = 8 Superspace.
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3.1 E8(8) symmetry

In this section, we show how SO(16) can be extended to E8(8), the largest non-compact

group that contains SO(16) as its maximal compact subgroup. In a previous paper [7], we

had extended the SU(8) symmetry ofN = 8 light-cone Superspace to the non-compact E7(7)

with SU(8) as its maximal compact subgroup. While SU(8) is linearly realized, the seventy

coset E7(7)/SU(8) transformations act non-linearly on the chiral superfield in any dimen-

sions. However in four dimensions, E7(7) commutes with the light-cone Hamiltonian, repro-

ducing the well-known Cremmer-Julia dynamical symmetry [3, 4] of N = 8 Supergravity.

We showed [7] that the non-linear E7(7)/SU(8) coset transformations in N = 8 Super-

space of the chiral superfield could be elegantly expressed as

δ70 ϕ = δ
(−1)
70 ϕ + δ

(1)
70 ϕ + O(κ3)

= −1

κ
θklmn βklmn

+
κ

4 · 4!
βmnpq

(
∂

∂ η

)

mnpq

1

∂+2

(
eη·

ˆ̄d ∂+3ϕe−η· ˆ̄d∂+3ϕ
) ∣∣∣∣

η=0

+O(κ3) , (3.8)

order by order in the dimensionful parameter κ, and where βijkl are the seventy coset

E7(7)/SU(8) parameters which satisfy the self-duality condition

βijkl =
1

4!
ǫijklmnpq βmnpq ,

ˆ̄dm ≡ d̄m/∂
+, and ηm are Grassmann variables with

(
∂

∂ η

)

mnpq

≡ ∂

∂ ηm

∂

∂ ηn

∂

∂ ηp

∂

∂ ηq
.

These transformations preserve chirality, the inhomogeneous δ
(−1)
70 ϕ because of its global

character, that is ∂+βijkl = 0, while δ
(1)
70 ϕ is manisfestly chiral because of its coherent

state-like construction.

Consider the embedding

E8 ⊃ SO(16) , 248 = 120 + 128 , (3.9)

where the SO(16) irreducible representations are decomposed in terms of SU(8) × U(1) as

120 = 630 + 28−1 + 281 + 10

128 = 1′
2 + 28′

1 + 700 + 28
′
−1 + 1̄′

−2 , (3.10)

where the subscript indicates their U(1) values. We recognize the 70 as the representation

in E7(7)/SU(8); the rest of the coset E8(8)/SO(16) transformations form two U(1) singlets,

a twenty-eight dimensional representation and its complex conjugate (not to be confused

with the 1, 28, and 28 in the adjoint representation of SO(16)). Closure of the algebra

[ SO(16) , E8(8)/SO(16) ] ⊂ E8(8)/SO(16) ,
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enables us to determine the E8(8)/SO(16) action on the chiral superfield. The construction

of the 128 inhomogeneous transformations begins with the commutator

δ
(−1)
28′ ϕ = [ δ28 , δ

(−1)
1′ ]ϕ = δ28 δ

(−1)
1′ ϕ− δ

(−1)
1′ δ28 ϕ .

Since the variations act only on the superfield, and δ
(−1)
1′ ϕ is a constant which is not to be

varied, this requirement amounts to expressing δ
(−1)
28′ ϕ in terms of δ

(−1)
1′ ϕ

δ
(−1)
28′ ϕ = − αij

qi qj

∂+
δ
(−1)
1′ ϕ = 2αij θ

i θj ∂+ δ
(−1)
1′ ϕ , (3.11)

using

qm ϕ(y) = i
√

2 θm ∂+ ϕ(y) . (3.12)

Proceeding in a similar fashion, the remaining E8(8)/SO(16) inhomogeneous transforma-

tions are found to be

δ
(−1)
70 ϕ = [ δ28 , δ

(−1)
28′ ]ϕ ∼ θijkl ∂+2 δ

(−1)
1′ ϕ ,

δ
(−1)

28
′ ϕ = [ δ28 , δ

(−1)
70 ]ϕ ∼ θijklmn ∂+3 δ

(−1)
1′ ϕ ,

δ
(−1)

1
′ ϕ = [ δ28 , δ

(−1)

28
′ ]ϕ ∼ θijklmnpq ∂+4 δ

(−1)
1′ ϕ .

It is convenient to express the inhomogeneous transformations for the 128 parameters β̄,

β̄ij , β̄ijkl, β̄ijklmn, and β̄ijklmnpq, on the superfield ϕ̂ = 1
∂+2ϕ, starting with

δ
(−1)
1′ ϕ̂(y) =

1

∂+4
δ
(−1)
1′ h(y) =

1

κ

1

∂+4
β(y) ,

together with

δ
(−1)
28′ ϕ̂ = i

1

κ
θij 1

∂+3
βij , δ

(−1)
70′ ϕ̂ = − 1

κ
θijkl 1

∂+2
βijkl,

δ
(−1)

28
′ ϕ̂ = i

1

κ
θijklmn 1

∂+
βijklmn, δ

(−1)

1
′ ϕ̂ = 4

1

κ
θijklmnpq βijklmnpq .

In this way we need only consider the operation of 1
∂+n on a constant function of the chiral

coordinates; it is defined in terms of integrals over the chiral coordinate

1

∂+n
c(y) = (−)n

y−n

n!
cn + (−)(n−1) y

−(n−1)

(n− 1)!
cn−1 + . . . − y−c1 + c0 ,

where cn are the integration constants.

On the component fields these correspond to constant shifts on the boson fields only

δ
(−1)
1′ h(y) =

β

κ
δ
(−1)

1
′ h̄(y) =

β

κ

δ
(−1)
28′ Bij(y) =

βij

κ
, δ

(−1)

28
′ Bij(y) =

βij

κ
,

δ
(−1)
70′ Dijkl(y) =

βijkl

κ
,
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where

β = ǫijklmnpqβ ijklmnpq/8! , βij = ǫijklmnpqβklmnpq/6! .

Having determined the inhomogeneous transformations, we use a similar method to find

the order-κ coset transformations, starting from the commutator

δ
28

′ ϕ = [ δ28 , δ70 ]ϕ = δ28δ70ϕ − δ70δ28ϕ .

The symmetry under the interchange of η and − η in the coherent state-like form of δ
(1)
70ϕ,

eq. (3.8) then leads to

δ28δ
(1)
70ϕ = − 2αij

κ

4!
βmnpq

(
∂

∂ η

)

mnpq

1

∂+2

(
eη·

ˆ̄d θiθj ∂+4ϕe−η· ˆ̄d∂+3ϕ
) ∣∣∣∣

η=0

,

and

δ
(1)
70 δ28ϕ =

− 2κ

4!
αij θ

iθj βmnpq

(
∂

∂ η

)

mnpq

1

∂+2

(
eη·

ˆ̄d ∂+4ϕe−η· ˆ̄d∂+3ϕ
) ∣∣∣∣

η=0

.

Using

[ eη·
ˆ̄d , θi ] =

ηi

∂+
eǫ·

ˆ̄d ,

one rewrites δ
(1)
70 δ28ϕ as

− 2αij
κ

4!
βmnpq

(
∂

∂ η

)

mnpq

1

∂+2

( [
ηiηj + θiθj∂+2

]
eη·

ˆ̄d∂+2ϕe−η· ˆ̄d∂+3ϕ
) ∣∣∣∣

η=0

,

which yields

δ
(1)

28
′ ϕ = − 2αij

κ

4!
βmnpq

(
∂

∂ η

)

mnpq

ηiηj 1

∂+2

(
eη·

ˆ̄d∂+2ϕe−η· ˆ̄d∂+3ϕ
) ∣∣∣∣

η=0

,

and can be rewritten as

δ
(1)

28
′ ϕ = κβij

(
∂

∂ η

)

ij

1

∂+

(
eη·

ˆ̄d∂+2ϕe−η· ˆ̄d∂+2ϕ
) ∣∣∣∣

η=0

, (3.13)

where we have reset the parameters to

β ij = − 1

2
β ijmn αmn .

The remaining order-κ coset transformations follow:

δ
(1)
28′ ϕ = [ δ28 , δ

(1)
70 ]

= κβ ijmnpq

(
∂

∂ η

)

ijmnpq

1

∂+3

(
eη·

ˆ̄d∂+4ϕe−η· ˆ̄d∂+4ϕ
) ∣∣∣∣

η=0

,

δ
(1)
1′ ϕ = [ δ28 , δ

(1)
28′ ]ϕ

= κβ ijklmnpq

(
∂

∂ η

)

ijklmnpq

1

∂+4

(
eη·

ˆ̄d∂+5ϕe−η· ˆ̄d∂+5ϕ
) ∣∣∣∣

η=0

,
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δ
(1)

1̄′
ϕ = [ δ28 , δ

(1)

28
′ ]ϕ = 4κβ ∂+ϕ∂+ϕ .

All these E8(8)/SO(16) coset transformations can be written in the compact form

δE8(8)/ SO(16) ϕ =
1

κ
F + κ ǫi1i2...i8

2∑

c=−2

(
1

i|c+2| d̂i1i2···i2(c+2)
∂+(4+c) F

) ∣∣∣∣
θ̄=0

(3.14)

×
{(

∂

∂ η

)

i2c+5···i8
∂+(c−2)

(
eη·

ˆ̄d ∂+(3−c)ϕe−η· ˆ̄d∂+(3−c)ϕ
) ∣∣∣∣

η=0

+O(κ2)

}
,

where the sum is over the U(1) charges c = 2, 1, 0,−1,−2 of the bosonic fields, and

F =
1

∂+2 β (y) + i θmn 1

∂+
βmn (y) − θmnpq βmnpq (y) +

+ iθ̃ mn ∂
+ βmn (y) + 4 θ̃ ∂+2

β̄ (y) ,

and

d̂i1i2···i2(c+2)
≡ 1

(2c+ 4)!
d̂i1 d̂i2 · · · d̂2(c+2) .

This construction can in principle be continued to order κ3, but its expression would

not yield any further insight. It is to be emphasized that this symmetry is independent

of dynamics. However supersymmetric dynamics in various dimensions may or may not

respect it. In d = 3, as we show in the next section, it is left intact, but it is progressively

nibbled at in higher dimensions, until nothing is left of it in d = 11.

4. E8(8)-invariant dynamics

In supersymmetric theories, the Hamiltonian is determined from the dynamical supersym-

metries. Thus its invariance under any symmetry requires the dynamical supersymmetries

to have well-defined transformation properties.

Invariance of the Hamiltonian under E8(8) requires the dynamical supersymmetries

to transform linearly under SO(16). It is easy to see that this restricts the dynamics to

take place in three space-time dimensions. In four dimensions, the lowest order dynamical

supersymmetries, with parameters ǫm and ǭm,

δdyn
s ϕ = ǫm

∂

∂+
q̄m ϕ + O(κ) , δdyn

s̄ ϕ = ǭm
∂̄

∂+
qm ϕ + O(κ) , (4.1)

transform under SU(8) as 8̄ and 8, respectively; they lead to E7(7)-invariant dynamics. It

is easy to see that they do not transform into one another under SO(16)/SU(8) unless the

transverse derivatives satisfy ∂ = ∂̄. This is automatic in d = 3 where there is only one

transverse space dimension; only then the dynamical supersymmetries transform as the

vectorial 16 of SO(16), and we are dealing with a theory with N = 16 supersymmetries.

In order to construct the dynamical supersymmetries to higher orders in κ, we note

that although there is no helicity in three dimensions, SO(16) requires covariance for its

U(1) subgroup. Its action on the superfield, eq. (3.5),

δU(1) ϕ = T ϕ =
(

2 − 1

2
θmq̄m

)
ϕ ,

– 7 –
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is rewritten here in terms of linear operators, assigning the charge +2 to ϕ. Each component

of the superfield has a definite U(1) value: h has value +2

δU(1)h = 2h , (4.2)

and the U(1) charges of the remaining bosons are Bij(1), Dijkl(0), B
ij(−1), h(−2), and for

the fermions ψi(3/2), χijk(1/2), χ
ijk(−1/2), and ψi(−3/2). It follows that the dynamical

supersymmetry transformation has a definite charge, that is

[ δU(1) , δ
dyn
s ]ϕ = − 1

2
δdyn
s ϕ . (4.3)

Any term in δdyn
s ϕ which is of higher order in the superfields must have the same charge

as the linear term.

This is not possible for the quadratic term: using the inside-out constraint, the charge

of ϕ̄ is opposite that of ϕ, so either we have ϕϕ with twice the charge, or ϕϕ with no charge;

either way neither has the same charge as that of the term linear in ϕ. We conclude that

the dynamical supersymmetries contain no terms linear in κ: the Hamiltonian has no cubic

interaction.

The same is not true for the order κ2 term cubic in the superfield; there we can have

terms structurally of the form

ǫmq̄mϕϕ d̄
8ϕ ∼ ǫmq̄mϕϕϕ , (4.4)

by which we mean three chiral superfields with eight powers of d̄ sprinkled among them.

The quartic interaction in the Hamiltonian, constructed from the free and order κ2 dynam-

ical supersymmetries with the same charge, can now be U(1) invariant.

The two supersymmetries are obtained from one another by

[ δ28 , δ
dyn
s ]ϕ = δdyn

s̄ ϕ , (4.5)

which must be true to all orders in κ. As we did in [7], the dynamical supersymmetry

transformations are restricted by requiring that they commute with the non-linear part of

the symmetry, that is

[ δE8(8)/ SO(16) , δ
dyn
s ]ϕ = 0 .

Expanding this equation in the coupling shows that δdyn
s ϕ contains only terms with oven

powers of κ, since U(1) invariance forbids terms quadratic in the superfield. To first order

in κ, we find that

[ δ
(1)
E8(8)/ SO(16) , δ

dyn (0)
s ]ϕ + [ δ

(−1)
E8(8)/ SO(16) , δ

dyn (2)
s ]ϕ = 0 ,

which is used to restrict the form of δ
dyn (2)
s ϕ. Coupled with the U(1) charge restriction

(δ
dyn (2)
s ϕ built out of three chiral superfields with eight d̄m’s), this equation is sufficient

to determine its form.

To see this, choose a particular E8(8)/SO(16) transformation, say 1̄′, which yields

δ
(−1)

1̄′
δdyn (2)
s ϕ = β̄

κ

∂+

(
ǫq̄∂ϕ∂+2ϕ − ∂∂+ϕ ǫq̄∂+ϕ

)
,

– 8 –
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since δ
(−1)

1̄′
ϕ is a constant, and therefore δ

dyn (2)
s δ

(−1)

1̄′
ϕ vanishes. It constrains only the

terms in δ
dyn (2)
s ϕ which are affected by δ

(−1)

1̄′
, which we denote by δ

dyn (2) [1′]
s ϕ.

By introducing the operators

E ≡ ea∂̂ + b ǫ ˆ̄q + ηd̂ and E−1 ≡ e− a∂̂ − b ǫ ˆ̄q− ηd̂ ,

we can rewrite this constraint in compact form

δ
(−1)

1̄′
δdyn (2)
s ϕ = κ

β̄

2

∂

∂a

∂

∂b

(
E∂+2ϕ E−1∂+2ϕ

) ∣∣∣
a=b=η=0

. (4.6)

Consider the chiral combination

δdyn (2) [1̄′]
s ϕ =

κ2

2

∂

∂a

∂

∂b

1

∂+2

[
E∂+3ϕ E−1Z

] ∣∣∣
a=b=η=0

, (4.7)

where

Z =
ǫijklmnpq

2 · 8!

(
∂

∂ξ

)

ijklmnpq

1

∂+4

(
eξ

ˆ̄d∂+6ϕ e−ξ ˆ̄d∂+6ϕ
) ∣∣∣

ξ=0
.

By taking δ
(−1)

1̄′
on this chiral combination (4.12), one gets

δ
(−1)

1̄′
δdyn (2) [1̄′]
s ϕ = κ2 β̄

2

∂

∂a

∂

∂b

1

∂+2

[
E∂+3δ

(−1)

1̄′
ϕ E−1Z + E∂+3ϕ E−1δ

(−1)

1̄′
Z

] ∣∣∣
a=b=η=0

= κ
β̄

2

∂

∂a

∂

∂b

1

∂+2

(
E∂+3ϕ E−1∂+2ϕ

) ∣∣∣
a=b=η=0

, (4.8)

where the first term E∂+3δ
(−1)

1̄′
ϕ vanishes since ∂+3δ

(−1)

1̄′
ϕ = 1

κθ
8∂+β̄ = 0, and the

second term becomes

δ
(−1)

1̄′
Z =

β̄

κ
∂+2ϕ .

Thus, this chiral combination is the solution that satisfies the constraint (4.6).

The dynamical supersymmetry transformations for the rest of the coset E8(8)/SO(16),

28
′
, 70, 28′ and 1′, can be obtained in a similar fashion. For the 28

′
transformations,

commutativity yields the constraint

δ
(−1)

28
′ δ

dyn (2)
s ϕ =

κ

2
βij

(
∂

∂η

)

ij

∂

∂a

∂

∂b

1

∂+2

(
E ∂+3ϕ E−1 ∂+3ϕ

) ∣∣∣
a=b=η=0

,

and with the solution

δdyn (2) [28
′

]
s ϕ =

κ2

2

(
∂

∂η

)

ij

∂

∂a

∂

∂b

1

∂+3

[
E∂+4ϕ E−1Zij

] ∣∣∣
a=b=η=0

, (4.9)

where Zij is defined as

Zij =
ǫijklmnpq

2 · 6!

(
∂

∂ξ

)

klmnpq

1

∂+2

(
eξ

ˆ̄d∂+5ϕ e−ξ ˆ̄d∂+5ϕ
) ∣∣∣

ξ=0
.
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The constraint for the 70 transformations is

δ
(−1)
70 δdyn (2)

s ϕ =
κ

2
βijkl

(
∂

∂η

)

ijkl

∂

∂a

∂

∂b

1

∂+3

(
E ∂+4ϕ E−1 ∂+4ϕ

) ∣∣∣
a=b=η=0

,

which is the same as for N = 8 Supergravity, and the solution is therefore of the same form

δdyn (2) [70]
s ϕ =

κ2

2

(
∂

∂η

)

ijkl

∂

∂a

∂

∂b

1

∂+4

[
E∂+5ϕ E−1Zijkl

] ∣∣∣
a=b=η=0

, (4.10)

where

Zijkl =
ǫijklmnpq

2 · 4!

(
∂

∂ξ

)

mnpq

(
eξ

ˆ̄d∂+4ϕ e−ξ ˆ̄d∂+4ϕ
) ∣∣∣

ξ=0
.

Repeating the same procedure, one obtains the constraints from the 28′ transformations

δ
(−1)
28′ δ

dyn (2)
s ϕ =

κ

2
βijklmn

(
∂

∂η

)

ijklmn

∂

∂a

∂

∂b

1

∂+4

(
E ∂+5ϕ E−1 ∂+5ϕ

) ∣∣∣
a=b=η=0

,

with the solution

δdyn (2) [28′]
s ϕ =

κ2

2

(
∂

∂η

)

ijklmn

∂

∂a

∂

∂b

1

∂+5

[
E∂+6ϕ E−1Zijklmn

] ∣∣∣
a=b=η=0

, (4.11)

where

Zijklmn =
ǫijklmnpq

2 · 2!

(
∂

∂ξ

)

pq

∂+2
(
eξ

ˆ̄d∂+3ϕ e−ξ ˆ̄d∂+3ϕ
) ∣∣∣

ξ=0
.

Finally, the 1′ transformations yield

δ
(−1)
1′ δdyn (2)

s ϕ =
κ

2
βijklmnrs

(
∂

∂η

)

ijklmnrs

∂

∂a

∂

∂b

1

∂+5

(
E ∂+6ϕ E−1 ∂+6ϕ

) ∣∣∣
a=b=η=0

,

together with the solution

δdyn (2) [1′]
s ϕ =

κ2

2

(
∂

∂η

)

ijklmnpq

∂

∂a

∂

∂b

1

∂+6

[
E∂+7ϕ E−1Zijklmnpa

] ∣∣∣
a=b=η=0

, (4.12)

where

Zijklmnpq =
1

2
ǫijklmnpq∂+4

(
eξ

ˆ̄d∂+2ϕ e−ξ ˆ̄d∂+2ϕ
) ∣∣∣

ξ=0
.

Combining all together, one writes a compact form for the constraints as a sum over

the five U(1) values of the coset transformations

δ
(−1)
E8(8)/ SO(16)δ

dyn (2)
s ϕ (4.13)

=
κ

2

2∑

c=−2

βi1···i2(2+c)

(
∂

∂η

)

i1···i2(2+c)

∂

∂a

∂

∂b

1

∂+(3+c)

(
E ∂+(4+c)ϕ E−1 ∂+(4+c)ϕ

) ∣∣∣
a=b=η=0

.
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Their solutions are given by

δdyn (2)
s ϕ

=
κ2

2

2∑

c =−2

1

∂+(c+4)

{
∂

∂a

∂

∂b

(
∂

∂η

)

i1i2···i2(c+2)

(
E∂+(c+5)ϕE−1

) ∣∣∣∣∣
a=b=η=0

× ǫi1i2···ıi8

(4 − 2 c)!

(
∂

∂ η

)

i2c+5···i8
∂+2c

(
E∂+(4−c)ϕE−1∂+(4−c)ϕ

) ∣∣∣∣∣
η=0

}
, (4.14)

where the sum is, as before, over the U(1) charges. One term in (4.14), the one from the

variation generated by the 70, eq. (4.10), is in fact the expression we get at this order by

dimensionally reducing the d = 4 theory.

The absence of a term of order-κ2n+1 in the dynamical supersymmetry transformations

means that the Hamiltonian itself has no order-κ2n+1 interactions. This is not a surprise

since the chiral superfield contains the two spinor representations of SO(16), 128 and

128′, and spinor representations have no odd-order invariants. This shows that the E8(8)-

invariant theory is distinct from the other N = 16 supergravity theory that is obtained by

dimensional reduction from N = 8 Supergravity [7] in four dimensions.

The dynamical supercharge is the basic construct. The Hamiltonian is easily obtained

by either using the anticommutator between the dynamical supercharge and its complex

conjugate, or from the using the quadratic form as in [7]. We do not do it here even though

it is straightforward since it does not add to our knowledge about this theory.

5. Conclusions and outlook

In this paper we have shown how to construct the E8(8) symmetry on the maximally

supersymmetric light-cone superfield with 256 degrees of freedom. The complete symmetry

spanned by this superfield is a semi-direct product of the superPoincaré symmetry and the

E8(8) symmetry. This sounds somewhat strange since there is no such supersymmetry

in classifications of superalgebras. The key point here is that when the E8(8) symmetry is

decomposed into SO(16)×E8(8)/SO(16), the superalgebra transforms under the SO(16) but

not under the coset. This is possible only because the coset is non-linearly realized. This

gives us then a powerful method to construct the dynamics where the coset transformations

can be used order by order to find the dynamics.

It is clear from the construction that this is not a priori a dimensionally reduced theory

from the d = 4 one. If the dynamical supersymmetry derived in (4.14) is “oxidized” to

d = 4 it will not transform correctly under the helicity generator. It is usually argued

that when the maximal supergravity is dimensionally reduced to d = 3 one has to use

duality transformations and Weyl scalings to get all the bosonic fields to be scalars, and it

is only then that one can find the E8(8) symmetry. In the light-cone formulation where only

physical degrees of freedom are present, the duality of a vector with a scalar in d = 3 is

trivial in the sense that it reduces to an identity. The one dynamical component of a vector

field does indeed transform as a scalar. We have been unable to find a field redefinition,

which is the only freedom we can try here, to connect the seemingly different two d = 3
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theories: the one with the full E8(8) symmetry constructed here and the other with E7(7)

obtained by a naive dimensional reduction.

The complete one-loop contribution to the four-graviton scattering matrix element in

any dimension was constructed in [9] using the zero-slope limit and dimensional reduction

of Type II superstrings. It was found to be a box diagram with the proper kinematical

factors. Naively such result can only be derived from an underlying field theory with a

three-point coupling. This can be seen by looking at the cuts of the amplitude. However

there is no three-point coupling in the theory with an E8(8) symmetry as we have discussed

above and thus we conclude that the d = 3 theory that we have derived above would give

a different one-loop contribution to the four-graviton scattering matrix element. We note,

however, that in d = 3 the infrared singularities are worse than in higher dimensions and

the loop amplitude has to be very carefully constructed. That might resolve the problem

of relating the two theories but we have again been unable to do so. The d = 3 theory that

we have constructed is unique and must be the one constructed by Marcus and Schwarz [6]

and by de Wit, Nicolai and Tollsten [10].

There are now two ways to continue this analysis. We could try to go down in dimen-

sions and in that process try to find the infinite algebras E9, E10 and possibly E11. These

algebras have been quite popular recently with claims that they play a rôle also for the

higher-dimensional theories. For a review, see [11] and references contained therein. The

other road is to go up in dimensions and check how much is left of the exceptional symme-

tries in various dimensions. Our analysis suggests that the exceptional symmetries could

be broken in higher dimensions in a controlled way such that they still play a rôle for the

dynamics. We believe that our formalism is quite suitable for the study of both these lines.

We finally like to point out that our formalism using coherent-state techniques is

extremely efficient. The expression in (4.14) will contain hundreds of terms of different

combinations of the superfield. With the new technique they can be treated all in one go.

This gives us hope that we should be able to find expressions to all orders in the coupling

constants just as in a non-linear σ-model. After all the d = 3 theory is a supersymmetric

version of a non-linear σ-model. We also hope to be able to come back this issue in future

publications.
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